

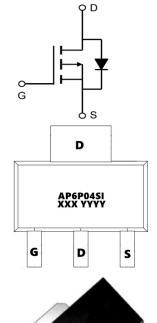
-40V P-Channel Enhancement Mode MOSFET

Description

The AP6P04SI uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = -40V I_{D} = -6.8A$


 $R_{DS(ON)} < 72m\Omega @ V_{GS}=-10V (Type: 65m\Omega)$

Application

Battery protection

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP6P04SI	SOT89-3L	AP6P04SI XXX YYYY	3000

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Symbol	Parameter	Steady State	Units	
VDS	Drain-Source Voltage	-40	V	
VGS	Gate-Source Voltage ±20		V	
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ -4.5V ¹ -6.8		Α	
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ -4.5V ¹ -3.3		А	
IDM	Pulsed Drain Current ² -16.1		А	
P _D @T _A =25°C	Total Power Dissipation ³ 1.32		W	
P _D @T _A =70°C	Total Power Dissipation ³ 0.84		W	
TSTG	Storage Temperature Range -55 to 150		°C	
TJ	Operating Junction Temperature Range -55 to 150		℃	
R _θ JA	Thermal Resistance Junction-Ambient ¹	Ambient ¹ 85		
R₀JC	Thermal Resistance Junction-Case ¹	80	°C/W	

-40V P-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-40	-46		V	
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.018		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-3A		65	72	mΩ	
		V_{GS} =-2.5V , I_{D} =-2A		89	100		
VGS(th)	Gate Threshold Voltage	\/ \/ 050A	-1.0	-1.5	-2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} =V _{DS} , I _D =-250uA		2.5		mV/°C	
IDSS	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V ,T _J =25°C			-1	-1 -5 uA	
1000	Dialii-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V ,T _J =55°C			-5		
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-3A		5.8		S	
Qg	Total Gate Charge (-4.5V)			6.4		nC	
Qgs	Gate-Source Charge	V_{DS} =-32V , V_{GS} =-4.5V , I_{D} =-		2.1			
Qgd	Gate-Drain Charge			2.5			
Td(on)	Turn-On Delay Time			4.2			
Tr	Rise Time	V_{DD} =-20V , V_{GS} =-4.5V ,		23		ns	
Td(off)	Turn-Off Delay Time	R _G =3.3Ω, I _D =-3A		26.8			
T _f	Fall Time			20.6			
Ciss	Input Capacitance			620			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		65		pF	
Crss	Reverse Transfer Capacitance			53			
IS	Continuous Source Current ^{1,4}	\/-=\/-=0\/			-5.2	Α	
ISM	Pulsed Source Current ^{2,4}	- V _G =V _D =0V , Force Current			-16.1	Α	
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1	V	

Note:

- $1 \, {\mbox{\tiny ∞}}$ The data tested by surface mounted on a 1 inch FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width $\leqq 300 us$, duty cycle $\leqq 2\%$
- 3. The power dissipation is limited by 150°C junction temperature
- $4\sqrt{100}$ The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

-40V P-Channel Enhancement Mode MOSFET

Typical Characteristics

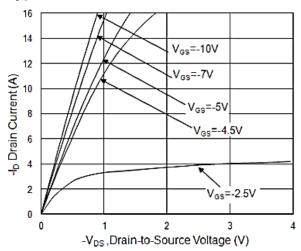


Fig.1 Typical Output Characteristics

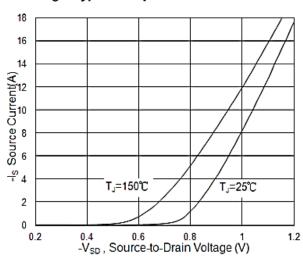


Fig.3 Forward Characteristics Of Reverse

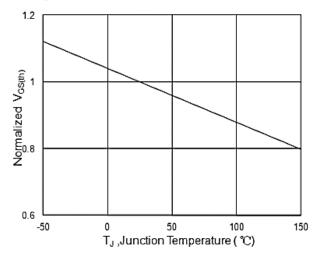


Fig.5 Normalized V_{GS(th)} vs. T_J

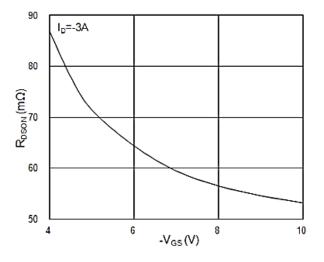


Fig.2 On-Resistance vs. G-S Voltage

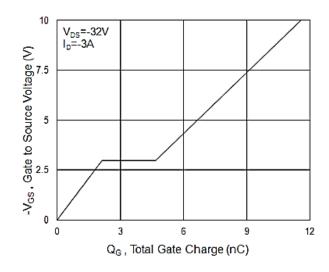


Fig.4 Gate-Charge Characteristics

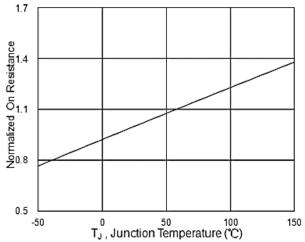
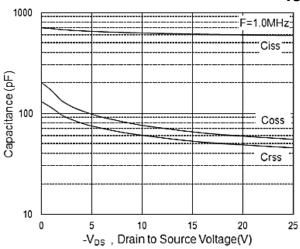



Fig.6 Normalized RDSON vs. TJ

-40V P-Channel Enhancement Mode MOSFET

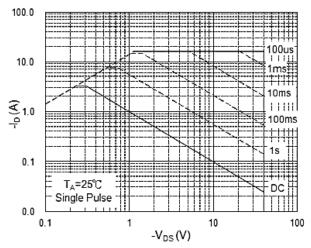


Fig.7 Capacitance

Fig.8 Safe Operating Area

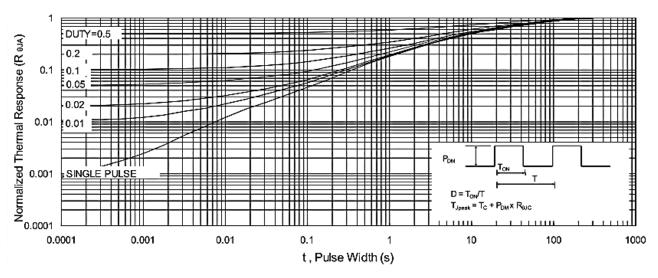
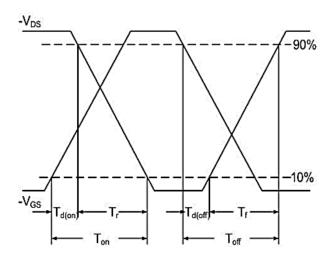



Fig.9 Normalized Maximum Transient Thermal Impedance

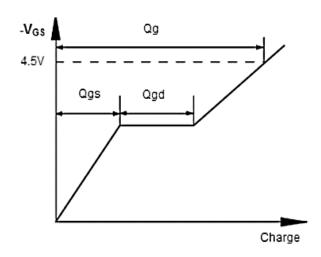
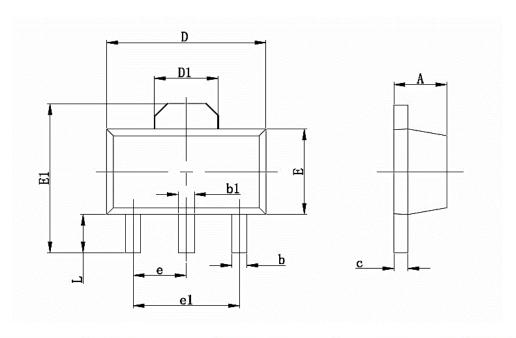



Fig.10 Switching Time Waveform

Fig.11 Gate Charge Waveform

-40V P-Channel Enhancement Mode MOSFET Package Mechanical Data:SOT89-3L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.350	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF		0.061 REF		
E	2.350	2.550	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060TYP		
e1	3.000 TYP		0.118TYP		
L	0.900	1.100	0.035	0.047	