

-30V P-Channel Enhancement Mode MOSFET

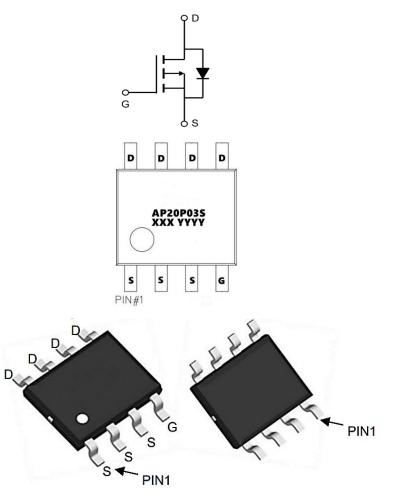
Description

The AP20P03S uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

电话:0769-89027776/81885205/81885153

General Features

V_{DS} = -30V I_D =-20A


 $R_{DS(ON)} < 7.5 m\Omega @ V_{GS} = -10V$ (Type: 5.2m Ω)

Application

Lithium battery protection

Wireless impact

Mobile phone fast charging

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS) 3000	
AP20P03S	SOP-8L	AP20P03S XXX YYYY		
Absolute Maximun	n Ratings (TC=25℃unless otherwise note	ed)		
Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	-30	V	
VGS	Gate-Source Voltage ±20		V	
ID@TC=25℃	Continuous Drain Current, VGS @ -10V1	-20	А	
ID@TC=100℃	Continuous Drain Current, VGS @ -10V1	-16.8	А	
IDM	Pulsed Drain Current2	-60	А	
EAS	Single Pulse Avalanche Energy3 125		mJ	
PD@TC=25℃	Total Power Dissipation4 69		W	
TSTG	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
RθJA	Thermal Resistance Junction-Ambient 1	85	°C/W	
RθJC	Thermal Resistance Junction-Case1	1.6	°C/W	

-30V P-Channel Enhancement Mode MOSFET

Electrical Characteristics (TJ=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30	-34		V	
$\triangle BV$ DSS/ $\triangle T_J$	BVDSS Temperature Coefficient	Reference to 25℃ , I _D =-1mA		-0.0232		V/°C	
	Static Drain-Source On-Resistance	V _{GS} =-10V , I _D =-20A		5.2	7.5 mΩ		
RDS(ON)		V _{GS} =-4.5V , I _D =-15A		8.0	11	-	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.2	-1.4	-2.5	V	
$\bigtriangleup V_{\text{GS(th)}}$	V _{GS(th)} Temperature Coefficient			4.6		mV/°C	
lann	Drain-Source Leakage Current	$V_{\text{DS}}\text{=-24V}$, $V_{\text{GS}}\text{=}0\text{V}$, $T_{\text{J}}\text{=}25^{\circ}\text{C}$			-1	uA	
IDSS		V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5		
lgss	Gate-Source Leakage Current	V_{GS} =±20V , V_{DS} =0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-30A		30		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		9.8		Ω	
Qg	Total Gate Charge (-4.5V)			35		nC	
Qgs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V I _D =-20A		9.9			
Qgd	Gate-Drain Charge			10.5			
Td(on)	Turn-On Delay Time			10.8		- ns	
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V ,		13.2			
Td(off)	Turn-Off Delay Time	- R _G =3.0Ω I _D =-20A		73			
T _f	Fall Time	10207		35			
Ciss	Input Capacitance			3520		pF	
Coss	Output Capacitance	$V_{\text{DS}}\text{=-}15\text{V}$, $V_{\text{GS}}\text{=}0\text{V}$, f=1MHz		465			
Crss	Reverse Transfer Capacitance			370			
ls	Continuous Source Current	(-1)(-0)/ Force Current			-70	А	
lsм	Pulsed Source Current	$V_G=V_D=0V$, Force Current			-130	А	
Vsd	Diode Forward Voltage	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.3	V	
trr	Reverse Recovery Time	IF=-20A , dl/dt=100A/μs ,		25		nS	
Qrr	Reverse Recovery Charge	Tյ=25℃		10		nC	

Note :

 $1_{\rm N}$ The data tested by surface mounted on a 1 inch 2 $\,$ FR-4 board with 2OZ copper.

 $2 \ensuremath{\, \mathrm{N}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .

 $3\$ The power dissipation is limited by $175^\circ\!C$ junction temperature

4、EAS condition: TJ=25°C, VDD= -24V, VG= -10V, RG=7Ω, L=0.1mH, IAS= -40A

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

N

-30V P-Channel Enhancement Mode MOSFET

Typical Characteristics



Figure 1. Output Characteristics

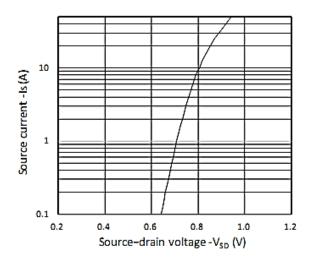


Figure 3. Forward Characteristics of Reverse

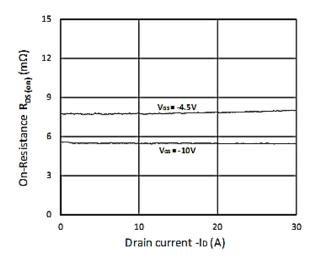


Figure 5. R_{DS(ON)} vs. I_D

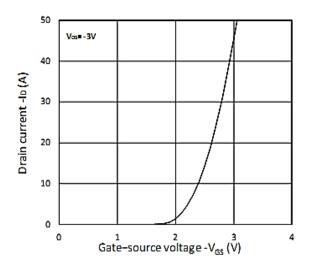
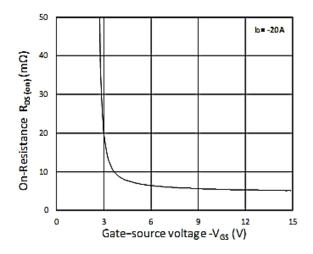



Figure 2. Transfer Characteristics

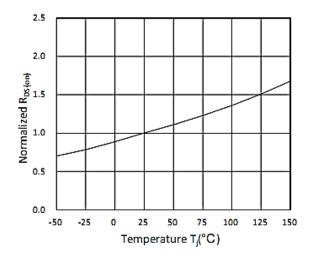
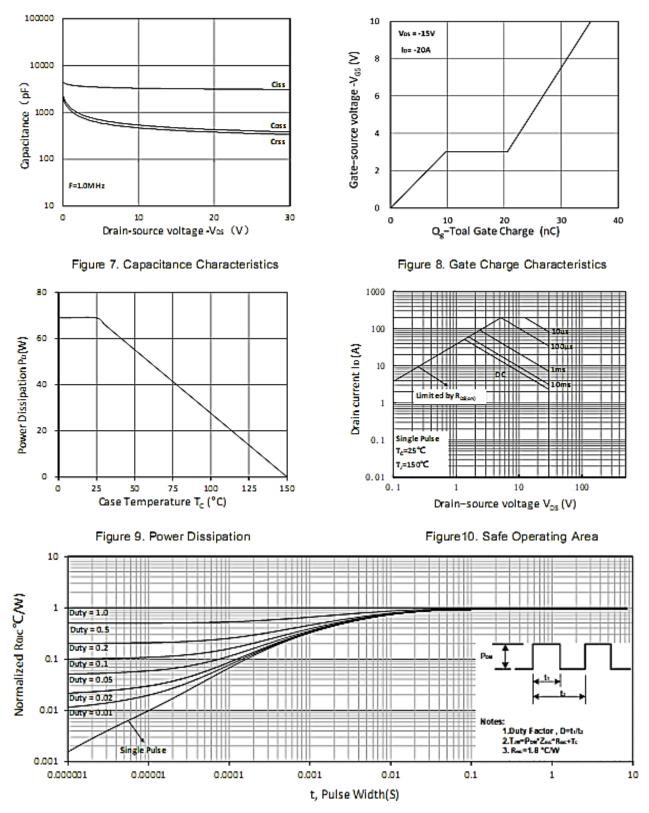



Figure 6. Normalized R_{DS(on)} vs. Temperature

ω

-30V P-Channel Enhancement Mode MOSFET

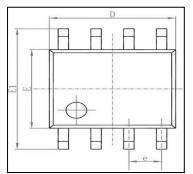
微

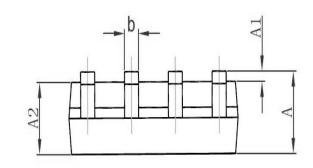
东莞市宇芯电子有限 DONGGUAN YUSHIN ELECTRONICS

电话:0769-89027776/81885205/81885153

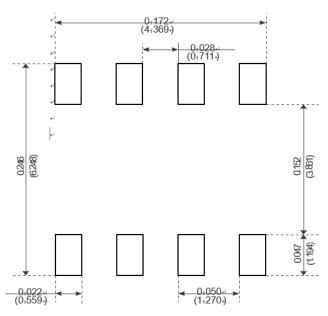
芯

YSMICRO


Figure 11. Normalized Maximum Transient Thermal Impedance



-30V P-Channel Enhancement Mode MOSFET


Package Mechanical Data-SOP-8L

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches	
	Min	Max	Min	Max	
А	1.350	1. 750	0.053	0.069	
A1	0. 100	0. 250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0. 330	0.510	0.013	0. 020	
С	0. 170	0. 250	0.006	0.010	
D	4. 700	5.100	0. 185	0.200	
E	3.800	4.000	0. 150	0.157	
E1	5.800	6.200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

Recommended Minimum Pads.